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ABSTRACT 

We apply the technique of Fujikawa to solve for simple two 

dimensional models by looking at the nontrivial transformation 

properties of the fermion measure in the path integral formallsm. We 

obtain the most general solution for the massless Thirring model and 

point out how the one parameter solution reduces to that of Johnson and 

Somnerfield in a particular limit, We present the most general solution 

for the massive vector model indicating how it reduces to the solutions 

of Brown and Sonmerfield for different values of the parameter. The 

solution of a gradient coupling model is also discussed. 
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I. INTRODUCTION 

In the past, soluble two dimensional field theoretic models have 

been studied extensively, notable among them being the massless Thirring 

model, the Schwinger model and the massive vector model [l-lo]. The 

solutions of these models have been obtained by various methods, namely, 

by explicitly solving the equations of motion, by operator methods, by 

bosonization etc. The main reason behind the solubility of these models 

is the fact that they contain a massless fermion in the theory which 

leads to classically conserved currents 

aV,t = cVLya J =o 
vv (1) 

Because of quantum effects these conservation laws become anomalous [ll] 

and It is the anomaly content of the theory that leads to the nontrivial 

solutions of these theories. 

Recently Fujikawa has shown in a series of papers [12-151 how 

various anomalies arise in the path integral formalism. The observation 

essentially is the fact that the fermion measure may transform 

nontrivially under various transformations leading to the anomalous Ward 

identities. It is, therefore, of interest to examine how one can obtain 

the already known solutions of various two dimensional models following 

the method of Fujikawa. The observation here is quite simple. For a 

two dimensional fermion, interacting with an external vector field, one 

can always redefine the fermlon fields so that they decouple. 
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Therefore, if the theory contains any nontrivial dynamics, it must 

essentially be contained in the transformation properties of the 

fermionic measure under the field redefinition. 

In general, the two dimensional models can have an Abelian or a non 

Abelian symnetry. We would consider only Abelian models for the 

present. Further, they may possess a local gauge invariance, as is the 

case with the Schwinger model [Z]. Roskies and Schaposnik [16] have 

studied this model from the path integral point of view. Of the models 

without any local gauge invariance, only the derivative coupling model 

was studied earlier [17-181 in the path integral formalism. In the 

present paper we investigate the other nongauge models, namely, the 

massless Thirring model, the massive vector model and the gradient 

coupling model. Our philosphy is as follows. Since these models do not 

possess any local symnetry we try to find out the most general change in 

the fermionic measure under a field redefiniton which would allow for an 

anomaly even in the vector current. In section II we work out this 

general change in the measure of a fermion interacting with an external 

vector field. In section III we use the results of the change in 

measure to obtain the most general solution for the massless Thirring 

model. It is a one parameter family of solutions and we indicate which 

value of the parameter leads to the Johnson [4] and Sonmerfield [5] 

result. In Sec. IV we study the massive vector model and discuss how 

different values of the one parameter family correspond to the results 

of Brown [6] and Somnerfield [5]. The pseudoscalar derivative coupling 

model has been studied earlier [17-181. In Sec. V we discuss the scalar 

model with a gradient coupling. Finally we present some concluding 

remarks in Sec. VI. 
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II. FERMIONS IN AN EXTERNAL VECTOR FIELD. 

Let us now study the case of a fermion field interacting with an 

external vector field. We want to emphasize that our purpose is to 

study the most general way the fermionic measure changes in such a case 

and, therefore, we do not associate any dynamical local gauge invariance 

with the vector field. That is, we allow for the possibility that the 

vector current conservation in such a case may become anomalous. The 

generating functional is given by 

Z = /D$$ eis 

where 

s = Jd2x[idr'[a~-iAr)"l 

Note that in l+l dimension, the vector field can be written as 

Ap = aFL0 t EvvaYc 

so that formally 

< = +,-'cavF 
P" 

where 

(2) 

(3) 

(4) 

F 
P” 

= allay-a A 
VP 
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Let us now calculate the most general change in the fermion measure 

if we make a simultaneous, infinitesimal gauge and chiral 

transformation, i.e., 

* -7 JI' = (l-i~(x)-i75Z(x))* 

j, -t Yj’ = $(l + iC(X] - 175E(X]) 

Before considering the effect of this transformation, let us 
00 

establish our notations. We work in the metric, g = 1, g" = -1 and in 

our notation 7' is hermitian with (7°)2 = 1 whereas 7' is antihermitian 

with (7112 = -1. 75 = 7'7' and it follows that it is hermitian with 

square equal to unity. In continuing to Euclidian space, we let 

x0+ i x ao+ia4, 
0 01 

4' 7 ‘1r4, 75 = 7 Y +ir1r4. r5 is hermitian in Euclidian 

space although the yV's are antihermitian and in Euclidian space we have 

the identity 

7y =-Is -ie 
)I" PV llv75 

With these conventions, it is clear that 

S = I d2x [r$7V[a,-iA,)e] 

= f d2x (i~7~(a~-ia~u-i~~yav~]*) 

(6) 

= J d2x (iG7V(au-iaV0-i75apg)*] 
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+ J (-id2xE) (-i~r~(a~-ia~o-irga~~l*l 

= iJd2xE (i~Y~(a~-ia~o-irga~g)*) 

= iSE 

so that 

2 = ~OllO* e -% 
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To find the change in the measure we have to choose a set of basis 

states In which to expand J, and $. It is clear that if we choose the 

same basis states for both $ and $, then that would lead to a gauge 

invariant result. And since we are interested in finding the most 

general change In the measure, i.e. , since we are allowing the vector 

current to be anomalous, we must expand JI and $ in terms of basis states 

which are eigenstates of different operators [19]. Because of the dual 

nature of AV and A5, 
P 

namely 

the covariant Dirac operator can be written as 
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Y’D 
P 

= ?(a 
P 

- iAll) 

= rv(ap- i6AV - lnr5A~) 

with n + E =I 
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(9) 

With this the energy operator in the Euclidean space becomes 

0 = ~~0~ = Y (a 
v v 

- W$, - hr5A;) (10) 

Here n and E are arbitrary parameters with the constraint in 

Eq. (9) and as we will show later, they essentially measure the gauge 

and chiral noninvariance of the functional measure. As can be seen 

easily, the operator 0 in Eq. (10) is not hermitean in Euclidean space. 

In fact 

0+ = Yv(ap - iEA,, + iw5Al) 

= rpD&A, - A51 (11) 

In recent literature [15], there has been a lot of controversy over 

the use of nonhermitian operators. In fact, when one uses nonhermitian 

operators, the orthonormality and the completeness of the basis states 

is not guaranteed. Therefore, to avoid all such criticism we use the 

two hermitian operators 
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i = 0+0 (12) 

in whose eigenstates we expand the fields $ and G. Thus for example [see 

ref. 151 

hn = A$, 

*ix) = pn$n 

G(x) = pn n +b 

(13) 

(14) 

Following the method of Fujikawa [12,13,15], one can show quite 

simply now, that under the combined transformation of Eq(5) 

where the Jacobian of the transformation has the forfn 
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Je = exp [ - & Jd*xE t~(x)( - ita,),, + +- y,vF;V) 

+ l(x)( - inarAz + $- E pvFJ) 1 (15) 

Similarly one can show that the change in measure associated with ? 

under a combined gauge and chiral transformation is given by 

where 

J- = exp [ 1 
* 

:n Id2xEi+)( - lCallAV - -j- E~,,F;\;) 

- ;(x)(inaVAz t -$- E puFpv ) 11 (16) 

Thus under a combined gauge and chiral transformation 

(infinitesimal), the most general change in the fermion measure Is given 

by 

J=JJ 
JI* 

= exp [ - & jd2xE(nE(x)ePyFzy + 5~(x)~,,F~,)l (17) 
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It is clear from Eq. (17) that both the vector and the axial vector 

currents become anomalous as 

a jp = n a A" 
v II P5 

a jP = _ E 
v5 

* aAp 
v5 

with n + E = 1 (18) 

Since we have omitted the tedious, but rather straightforward 

technical details of the calculation [12,13,18], several cornnents are in 

order. First of all, the arbitrariness in the choice of the operators 

in whose basis we expand the fields simply corresponds to the 

arbitrariness in the choice of the regularization scheme in conventional 

calculations. Therefore, we must choose the basis states to respect all 

other symnetries the theory may have, for example, Lorentz Invariance, 

translation invariance etc. In addition the basis states must also be 

chosen such that the anomalies satisfy the consistency conditions [20]. 

However, in this case since the anomalies are Abelian, this does not 

lead to any particular restriction. However, we can make connection 

between our result of Eq. (18) and the perturbative result in the 

following way. For example, from Lorentz invariance and Bose symmetry 

we can write the current correlation function as+ 

We would like to thank Prof. W. Bardeen for a clarifying discussion on 
this point. 
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<j&> = + [( 
kk 

k*' 
- g)J + WY-J 
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Here the coefficient of the finite transverse part is unique and the 

arbitrariness of any regularization scheme can only reflect In the 

longitudinal part. This form of the correlation function leads to the 

vector anomaly as 

ku<jVjV> = * k \I 

By using the duality relation, we can obtain the axial 

vector-vector correlation function as 

<jzjv> = epX<jAjy> 

1 kxk 
= q- [(-1 + I$ + EV1 

k* 
* 1 

This determines the axial anomaly to be 

k"<jtjV> = + (-1 + n)cVVku 

(20) 

Comparing this with the form of the axial anomaly in Eq. (18) we obtain 
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- E = -1 t lJ 

or, n + 6 = 1 

This now completes our derivation of the most general change in the 

fermion measure under a combined infinitesimal gauge and chiral 

transformations and is given by 

J = exp [ - + fd2x(n~(x)arA' + Ei(x)aVAg)l 

with 

q+c=1 (21) 

At this point we would like to make contact with conventional 

calculations. In that case, there does exist a regularization scheme 

which leads to these general results. This is the point splitting 

method where one defines the fermion current with a phase factor which 

neither preserves the gauge invariance nor the chiral invariance [7,8], 

namely 

Jp(x) = &im ~ $x')Y~$(x) e 
iJ;,dx;(EAu - nr$Fj) 

x' + x 

“0 = x0 

Let us note here that if we take the action of Eq(7) and make a 

field redefinition 



then the fermion fields decouple completely. Namely, 

SE = /d*xE (’ ijrrP(all- rap0 - ir5apc)lir) 

-13- 

*(xl = e 
ito + Y55) 

X(x) 

G(x) = K(x), 
-i(a - r5c) 
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= jd*xE iiy,a,x 

(22) 

(23) 

However, in this case, the field redifinitions correspond to a 

finite gauge and chiral transformation. Therefore, the measure changes 

nontrivially. The calculation of the change of measure under a finite 

transformation is slightly tricky and has been studied earlier [16,18]. 

In this case, it can be shown in a straightforward manner to be equal to 

D$O* = DRDX exp [ - L L jd*x AV(n gVagvE + Ec'e?$&$AJ (24) 

Therefore, after the field redefinition the effective action in 

Minkowski space becomes 
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s eff = /d*x (ijix"anX + + AVDpVAV) 

where 

On' = - .-I- (,,g'UgYa + EE~~e~B)a a P-3 
7i at? 

with n + C = 1 (25) 

Since the fermion fields have now decoupled, they can be integrated 

out leading to an unimportant constant. Thus the generating functional 

of Eq(2) becomes 

Z = C exp { + /d2x AnDVYAV} (26) 

This is the most general form of the generating functional in the 

absence of any local symmetries and conforms to earlier calculations by 

other methods [7,8]. 

III. MASSLESS THIRRING MODEL 

The generating functional for this theory is given by 
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ZTH = /D?D$ e 
i Id2x(i&naV+ - x/2 J~J~) 

where 

Jr = ;Erp$ 
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(27) 

If we want to compute the current correlation functions in this 

theory, we can add a source term for the currents and write 

ZTH = /D@$ e 
ijd2x(i&psV$ - x/2 jpj" + jnAp) 

= exp { -+ Jd2x 
a* 

) JD;Gb 
i/d2x(i&"(an - iAll)*) 

6An(x)6AV(x) 

(28) 

The functional integral on the right hand side is what we have 

already calculated in Eq(26). Substituting the value for that we obtain 

[211 
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'TH = C exp { + /d2x 62 

aAp(x)aAp(x) 
} exp {& /d2x ApD"A") 

I d2x A,, [ 1 i&, 

g!Jo’gvB 

= K exp { - - 
:n + 1 +FAE,n 

pcvB 
1 

aeraB ,-lAv} (29) 

This gives the most general solution of the massless Thirring 

model. We note that there is a one parameter family of solutions as had 

been observed earlier [7]. Furthermore, the particular solution of 

Johnson [4] and Somnerfleld [5] simply corresponds to the values of our 

parameters n = l/2 and E = l/2. 

IV. MASSIVE VECTOR MODEL 

The Lagrangian for this theory is given by 

LMV = - + (apBv - avBp)(a%Y - avfP) t $- BpBp 

t i JI P(av- ig BP) * (30) 
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Both the Schwinger model and the massless Thirring model can be 

thought of as limiting cases of this theory. For example, in the limit 

of p + 0, we obtain the Schwinger model. On the other in the infinite 

mass limit if we let 

x = T = fixed 

Then we recover the massless Thirring model. 

The generating functional for this theory is given by 

ZMv = jDBIIDj;D$ eis 

= JDBll e 
iS(Bp) 

/D?D+ e 
ijd2x(iSr'(av - 'g BP)*) 

(31) 

Here S(Bn) is just the action for the vector field. Furthermore, we can 

substitute for the functional integral on the right hand side from 

Eq(26) to obtain 

'MV = C JOB,, e 
lS(B,,) 

e 
i/2 Jd*x BnDnvBv 

= C /DBn e 
iSeff(Bp) 

where 
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Seff(B,J = - + (apBv - auBp)(apB"- aVBv) + -$- BpB" 

2 
t + B~(c gnu - (n + E) anavP-') Bv 

= - -$ ( apBv - avBp)(apBv- a"Bp) 

+ + (p2 t -+ ) BpBp - &- Bpa~avo-1t3y (32) 

Note that here we have made use of the constraint equation n + E = 1. 

Furthermore, the Euler-Lagrange equations for this theory require 

for consistency. If we put this condition back we note that the 

effective vector boson theory is a free theory with the mass 

renormalized to 

This is also the result obtained earlier [8] by using point splitting. 

In particular note that for 6 = 1, the mass renormalization corresponds 

to the result of a gauge Invariant regularization and is the value 

obtained by Brown [6] whereas Somnerfield's result [5] corresponds to 

the particular value of E = l/2. 
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We also note that if we set lo = 0, then we obtain the Schwinger 

model and if we regularize in a gauge invariant manner, i.e., if we 

choose n = 0, E = 1, then we obtain 

which one 'mediately recognizes as the Schwinger solution [2]. 

V. GRADIENT COUPLING MODEL 

In ref. 18 the most general solution was worked out for a 

pseudoscalar field interacting with a massless fermion field through a 

derivative coupling. The Lagrangian is given by 

m* 
L = + ap+ap+ - 2 o* + iwpap* + gb5P*av~ (34) 

We only quote the result of ref. 18 where it was shown that after a 

field redefinition the effective Lagrangian for the theory becomes 

L eff 
+++ ) aF1$av+ - -$- o2 

This can be derived in a straightforward manner from the result of 

section II and it shows that the massive field $ is effectively free 

with a renormalized mass given by 
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2 m = m2 
R 

(1 - Eg2/n) 
(36) 

Let us now consider the gradient coupling model where we consider + 

to be a scalar field and, therefore, the Lagrangian is given by 

LGC 

Note that we can rewrite this Lagrangian simply as 

LGC 
m2 

= -+- al14ap$ - 2 ‘gA,,)* 

with A = aV$ 
v 

The generating functional, therefore, can be written as 

Z = /DAnD;b0$~0$ a(A - a,,$) e 
i 'GC 

v 

= /DAPDo a(A 
v 

- ap$) eisco) 

. JDGD$ e 
i/d2x(W( ap - WV)*) 

(37) 

(38) 

Using the result of Eq(26) for the functional integral on the right hand 

side and then integrating over the functional delta function we obtain 
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ZGc = /De e 
iSeff(b) 
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where Seff =+t 

Again this shows that the effective scalar field is a free, massive 

field with a renormalized mass given by 

m2 = m* 
R 

(1 + ng2/4 
(401 

VI. CONCLUSIONS 

We have shown how one can obtain solutions of simple Abelian models 

like the massless Thirring model, massive vector model and the gradient 

coupling model in the path integral formalism following the methods due 

to Fujikawa. Roskies and Schaposnik [16] had already used these methods 

in connection with the Schwinger model which has a local gauge 

invariance. We have shown how these methods should be extended in a 

general manner to cases where no local symmetries exist. One general 

feature, in the absence of local symmetries, is that the solutions 

involve a generally arbitrary parameter. 

Although the solutions of the derivative coupling model and the 

gradient coupling model are new, those for the massless Thirring model 

and the massive vector model have been derived before by other 

techniques [7,8]. We have only presented a different way of looking at 
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them and hope that these methods would help our understanding of more 

complicated models possessing complicated non-Abelian structure. 

This work grew out of conversations with Prof. C.R. Hagen and we 

would like to thank him for his suggestions. One of us (A.D.) would 

like to thank Profs. S. Adler, W. Bardeen, E. D'Hoker and W. Weisberger 

for discussions. He would also like to thank the hospitality at the 

Aspen Center of Physics where part of this work was done. This work is 

supported by the U.S. Department of Energy and A.D. is supported by an 

Outstanding Junior Investigator Award. 

Note added: After this manuscript was written, we became aware of a 

recent preprint (M.A. Rubin, Fermilab-Pub-85/76-T) where the author 

studies the most general anomaly structure in the case of the massless 

Thirring model by making a Pauli-Gursey-Pursey transformation in the 

path integral formalism. We would like to thank Prof. K. Tanaka for 

bringing this to our attention. While we are not sufficiently familiar 

with the methods used in that paper, to be able to comment on the 

similarities, we believe that the approach and the spirit of our 

calculations are quite different. G. Duerksen has also studied the 

gauge invariant solution of Thirring model, Phys. Lett. 1038 (1981) 200. 
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